
g02 – Regression Analysis g02dac

nag regsn mult linear (g02dac)

1. Purpose

nag regsn mult linear (g02dac) performs a general multiple linear regression when the independent
variables may be linearly dependent. Parameter estimates, standard errors, residuals and influence
statistics are computed. nag regsn mult linear may be used to perform a weighted regression.

2. Specification

#include <nag.h>
#include <nagg02.h>

void nag_regsn_mult_linear(Nag_IncludeMean mean, Integer n, double x[],
Integer tdx, Integer m, Integer sx[], Integer ip, double y[], double wt[],
double *rss, double *df, double b[], double se[], double cov[],
double res[], double h[], double q[], Integer tdq, Boolean *svd,
Integer *rank, double p[], double tol, double com_ar[], NagError *fail)

3. Description

The general linear regression model is defined by

y = Xβ + ε

where y is a vector of n observations on the dependent variable,
X is a n by p matrix of the independent variables of column rank k,
β is a vector of length p of unknown parameters,

and ε is a vector of length n of unknown random errors such that var ε = V σ2, where V is a
known diagonal matrix.

Note: the p independent variables may be selected by the user from a set of m potential independent
variables.

If V = I, the identity matrix, then least-squares estimation is used. If V �= I, then for a given
weight matrix W ∝ V −1, weighted least-squares estimation is used.

The least-squares estimates β̂ of the parameters β minimize (y−Xβ)T (y−Xβ) while the weighted
least-squares estimates minimize (y − Xβ)T W (y − Xβ).

nag regsn mult linear finds a QR decomposition of X (or W 1/2X in the weighted case), i.e.

X = QR∗ (or W 1/2X = QR∗)

where R∗ =
(

R
0

)
and R is a p by p upper triangular matrix and Q is an n by n orthogonal matrix.

If R is of full rank, then β̂ is the solution to

Rβ̂ = c1

where c = QT y (or QT W 1/2y) and c1 is the first p elements of c. If R is not of full rank a solution
is obtained by means of a singular value decomposition (SVD) of R,

R = Q∗

(
D 0
0 0

)
PT

where D is a k by k diagonal matrix with non-zero diagonal elements, k being the rank of R and
Q∗ and P are p by p orthogonal matrices. This gives the solution

β̂ = P1D
−1QT

∗1
c1

P1 being the first k columns of P , i.e., P = (P1P0) and Q∗1
being the first k columns of Q∗.

[NP3275/5/pdf] 3.g02dac.1

nag regsn mult linear NAG C Library Manual

Details of the SVD are made available, in the form of the matrix P ∗:

P ∗ =
(

D−1PT
1

PT
0

)
.

This will be only one of the possible solutions. Other estimates may be obtained
by applying constraints to the parameters. These solutions can be obtained by using
nag regsn mult linear tran model (g02dkc) after using nag regsn mult linear (g02dac). Only
certain linear combinations of the parameters will have unique estimates; these are known as
estimable functions.

The fit of the model can be examined by considering the residuals, ri = yi − ŷ, where ŷ = Xβ̂ are
the fitted values. The fitted values can be written as Hy for an n by n matrix H . The ith diagonal
element of H , hi, gives a measure of the influence of the ith value of the independent variables on
the fitted regression model. The values hi are sometimes known as leverages. Both ri and hi are
provided by nag regsn mult linear.

The output of nag regsn mult linear also includes β̂, the residual sum of squares and associated
degrees of freedom, (n − k), the standard errors of the parameter estimates and the variance–
covariance matrix of the parameter estimates.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., Xi,1 = 1,
for i = 1, 2, . . . , n. This is provided as an option. Also note that not all the potential independent
variables need to be included in a model; a facility to select variables to be included in the model
is provided.

Details of the QR decomposition and, if used, the SVD, are made available. These allow the re-
gression to be updated by adding or deleting an observation using nag regsn mult linear addrem obs
(g02dcc), adding or deleting a variable using nag regsn mult linear add var (g02dec)
and nag regsn mult linear delete var (g02dfc) or estimating and testing an estimable function using
nag regsn mult linear est func (g02dnc).

4. Parameters

mean
Input: indicates if a mean term is to be included.
If mean = Nag MeanInclude, a mean term, (intercept), will be included in the model.
If mean = Nag MeanZero, the model will pass through the origin, zero point.
Constraint: mean = Nag MeanInclude or Nag MeanZero.

n
Input: the number of observations, n.
Constraint: n ≥ 2.

x[n][tdx]
Input: x[i][j] must contain the ith observation for the jth potential independent variable, for
i = 0, 1, . . . , n − 1; j = 0, 1, . . . , m − 1.

tdx
Input: the second dimension of the array x as declared in the function from which
nag regsn mult linear is called.
Constraint: tdx ≥ m.

m
Input: the total number of independent variables in the data set, m.
Constraint: m ≥ 1.

sx[m]
Input: indicates which of the potential independent variables are to be included in the model.
If sx[j] > 0, then the variable contained in the corresponding column of x is included in the
regression model.
Constraint: sx[j] ≥ 0, for j = 0, 1, . . . , m − 1.
Constraint: if mean = Nag MeanInclude, then exactly ip − 1 values of sx must be > 0.
Constraint: if mean = Nag MeanZero, then exactly ip values of sx must be > 0.

3.g02dac.2 [NP3275/5/pdf]

g02 – Regression Analysis g02dac

ip
Input: the number p of independent variables in the model, including the mean or intercept
if present.
Constraint: 1 ≤ ip ≤ n.

y[n]
Input: observations on the dependent variable, y.

wt[n]
Input: if weighted estimates are required then wt must contain the weights to be used in the
weighted regression. Otherwise wt need not be defined and may be set to the null pointer
NULL, i.e., (double *) 0.
If wt[i] = 0.0, then the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with positive weights. The values of
res and h will be set to zero for observations with zero weights.
If wt = NULL, then the effective number of observations is n.
Constraint: wt = NULL or wt[i] ≥ 0.0, for i = 0, 1, . . . , n − 1.

rss
Output: the residual sum of squares for the regression.

df
Output: the degrees of freedom associated with the residual sum of squares.

b[ip]
Output: b[i], i = 0, 1, . . . ,ip−1 contain the least-squares estimates of the parameters of the
regression model, β̂.
If mean = Nag MeanInclude, then b[0] will contain the estimate of the mean parameter and
b[i] will contain the coefficient of the variable contained in column j of x, where sx[j] is the
ith positive value in the array sx.
If mean = Nag MeanZero, then b[i − 1] will contain the coefficient of the variable contained
in column j of x, where sx[j] is the ith positive value in the array sx.

se[ip]
Output: se[i], i = 0, 1, . . . ,ip−1 contains the standard errors of the ip parameter estimates
given in b.

cov[ip∗(ip+1)/2]
Output: the first ip × (ip+1)/2 elements of cov contain the upper triangular part of the
variance-covariance matrix of the ip parameter estimates given in b. They are stored packed
by column, i.e., the covariance between the parameter estimate given in b[i] and the parameter
estimate given in b[j], j ≥ i, is stored in cov[j(j + 1)/2 + i], for i = 0, 1, . . . ,ip−1 and
j = i, i + 1, . . . ,ip−1.

res[n]
Output: the (weighted) residuals, ri.

h[n]
Output: the diagonal elements of H , hi, the leverages.

q[n][tdq]
Output: the results of the QR decomposition:
the first column of q contains c,
the upper triangular part of columns 2 to ip+1 contain the R matrix,
the strictly lower triangular part of columns 2 to ip+1 contain details of the Q matrix.

tdq
Input: the second dimension of the array q as declared in the function from which
nag regsn mult linear is called.
Constraint: tdq ≥ ip+1.

svd
Output: if a singular value decomposition has been performed then svd will be TRUE,
otherwise svd will be FALSE.

[NP3275/5/pdf] 3.g02dac.3

nag regsn mult linear NAG C Library Manual

rank
Output: the rank of the independent variables.
If svd = FALSE, then rank = ip.
If svd = TRUE, then rank is an estimate of the rank of the independent variables.
rank is calculated as the number of singular values greater than tol (largest singular value).
It is possible for the SVD to be carried out but rank to be returned as ip.

p[2∗ip+ip∗ip]
Output: details of the QR decomposition and SVD if used.
If svd = FALSE, only the first ip elements of p are used, these will contain the zeta values
for the QR decomposition (see nag real qr (f01qcc) for details).
If svd = TRUE, the first ip elements of p will contain the zeta values for the QR decomposition
(see nag real qr (f01qcc) for details) and the next ip elements of p contain singular values.
The following ip by ip elements contain the matrix P ∗ stored by rows.

tol
Input: the value of tol is used to decide what is the rank of the independent variables. The
smaller the value of tol the stricter the criterion for selecting the singular value decomposition.
If tol = 0.0, then the singular value decomposition will never be used, this may cause run
time errors or inaccurate results if the independent variables are not of full rank.
Suggested value: tol = 0.000001.
Constraint: tol ≥ 0.0.

com ar[5∗(ip−1)+ip∗ip]
Output: if on exit svd = TRUE, then com ar contains information which is needed by
nag regsn mult linear newyvar (g02dgc).

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 2: n = 〈value〉.
On entry, m must not be less than 1: m = 〈value〉.
On entry, ip must not be less than 1: ip = 〈value〉.
On entry, sx[〈value〉] must not be less than 0: sx[〈value〉] = 〈value〉.

NE 2 INT ARG LT
On entry, tdx = 〈value〉 while m = 〈value〉. These parameters must satisfy tdx ≥ m.
On entry, tdq = 〈value〉 while ip+1 = 〈value〉. These parameters must satisfy tdq ≥ ip+1.
On entry, n = 〈value〉 while ip = 〈value〉. These parameters must satisfy n ≥ ip.

NE REAL ARG LT
On entry, tol must not be less than 0.0: tol = 〈value〉.
On entry, wt[〈value〉] must not be less than 0.0: wt[〈value〉] = 〈value〉.

NE BAD PARAM
On entry, parameter mean had an illegal value.

NE BAD SX OR IP
Either a value of sx is < 0, or ip is incompatible with mean and sx, or ip > the effective
number of observations.

NE SVD NOT CONV
The singular value decomposition has failed to converge.

NE ZERO DOF RESID
The degrees of freedom for the residuals are zero, i.e., the designated number of parameters
= the effective number of observations.
In this case the parameter estimates will be returned along with the diagonal elements of H ,
but neither standard errors nor the variance-covariance matrix will be calculated.

NE ALLOC FAIL
Memory allocation failed.

3.g02dac.4 [NP3275/5/pdf]

g02 – Regression Analysis g02dac

6. Further Comments
Function nag regsn std resid influence (g02fac) can be used to compute standardised residuals and
further measures of influence. This function requires, in particular, the results stored in res and h.

6.1. Accuracy

The accuracy of this function is closely related to the accuracy of nag real qr (f01qcc). That function
document should be consulted.

6.2. References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall.
Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edn) Wiley.
Golub G H and Van Loan C F (1983) Matrix Computations Johns Hopkins University Press,

Baltimore.
Hammarling S (1985) The Singular Value Decomposition in Multivariate Statistics ACM Signum
Newsletter 20 (3) 2–25.

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall.
Searle S R (1971) Linear Models Wiley.

7. See Also

nag real qr (f01qcc)
nag regsn mult linear addrem obs (g02dcc)
nag regsn mult linear add var (g02dec)
nag regsn mult linear delete var (g02dfc)
nag regsn mult linear newyvar (g02dgc)
nag regsn mult linear est func (g02dnc)
nag regsn std resid influence (g02fac)

8. Example

For this function two examples are presented, in Sections 8.1 and 8.2. In the example programs
distributed to sites, there is a single example program for nag regsn mult linear, with a main
function:

/* nag_regsn_mult_linear(g02dac) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5 revised, 1998.
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg02.h>

#ifdef NAG_PROTO
static void ex1(void);
static void ex2(void);
#else
static void ex1();
static void ex2();
#endif

main()
{
ex1();
ex2();

}

The code to solve the two example problems is given in the functions ex1 and ex2 in Sections 8.1.1
and 8.2.1 respectively.

[NP3275/5/pdf] 3.g02dac.5

nag regsn mult linear NAG C Library Manual

8.1. Example 1

Data from an experiment with four treatments and three observations per treatment are read in.
The treatments are represented by dummy (0− 1) variables. An unweighted model is fitted with a
mean included in the model.

8.1.1. Program Text

#define NMAX 20
#define MMAX 20
#define TDX MMAX
#define TDQ MMAX+1

#ifdef NAG_PROTO
static void ex1(void)
#else

static void ex1()
#endif
{
double rss, tol;
Integer i, ip, rank, j, m, n;
double df;
Boolean svd;
char weight, meanc;
Nag_IncludeMean mean;
double b[MMAX], cov[(MMAX*MMAX+MMAX)/2], h[NMAX], p[MMAX*(MMAX+2)],
q[NMAX][MMAX+1], res[NMAX], se[MMAX], com_ar[MMAX*MMAX+5*(MMAX-1)],
wt[NMAX], x[NMAX][MMAX], y[NMAX];
double *wtptr;
Integer sx[MMAX];

Vprintf("g02dac Example 1 Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld %ld %c %c", &n, &m, &weight, &meanc);
if (meanc==’m’)

mean = Nag_MeanInclude;
else

mean = Nag_MeanZero;
if (n<=NMAX && m<MMAX)

{
if (weight==’w’)
{
wtptr = wt;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)

Vscanf("%lf", &x[i][j]);
Vscanf("%lf%lf", &y[i], &wt[i]);

}
}

else
{
wtptr = (double *)0;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)

Vscanf("%lf", &x[i][j]);
Vscanf("%lf", &y[i]);

}
}

for (j=0; j<m; j++)
Vscanf("%ld", &sx[j]);

/* Calculate ip */
ip = 0;
if (mean==Nag_MeanInclude)
ip += 1;

for (i=0; i<m; i++)
if (sx[i]>0) ip += 1;

3.g02dac.6 [NP3275/5/pdf]

g02 – Regression Analysis g02dac

/* Set tolerance */
tol = 0.00001e0;
g02dac(mean, n, (double *)x, (Integer)TDX, m, sx, ip, y,

wtptr, &rss, &df, b, se, cov, res, h, (double *)q,
(Integer)(TDQ), &svd, &rank, p, tol, com_ar, NAGERR_DEFAULT);

if (svd)
Vprintf("Model not of full rank, rank = %4ld\n\n", rank);

Vprintf("Residual sum of squares = %12.4e\n", rss);
Vprintf("Degrees of freedom = %3.1f\n\n", df);
Vprintf("Variable Parameter estimate Standard error\n\n");
for (j=0; j<ip; j++)
Vprintf("%6ld%20.4e%20.4e\n", j+1, b[j], se[j]);

Vprintf("\n");
Vprintf(" Obs Residuals h\n\n");
for (i=0; i<n; i++)
Vprintf("%6ld%20.4e%20.4e\n", i+1, res[i], h[i]);

}
else

{
Vfprintf(stderr, "One or both of m and n are out of range:\

m = %-3ld while n = %-3ld\n", m, n);
exit(EXIT_FAILURE);

}
return;

}

8.1.2. Program Data

g02dac Example 1 Program Data
12 4 u m

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89
1 1 1 1

8.1.3. Program Results

g02dac Example 1 Program Results
Model not of full rank, rank = 4

Residual sum of squares = 2.2227e+01
Degrees of freedom = 8.0

Variable Parameter estimate Standard error

1 3.0557e+01 3.8494e-01
2 5.4467e+00 8.3896e-01
3 6.7433e+00 8.3896e-01
4 1.1047e+01 8.3896e-01
5 7.3200e+00 8.3896e-01

Obs Residuals h

1 -2.3733e+00 3.3333e-01
2 1.7433e+00 3.3333e-01
3 8.8000e-01 3.3333e-01
4 -1.4333e-01 3.3333e-01
5 1.4333e-01 3.3333e-01
6 -1.4700e+00 3.3333e-01
7 -1.8867e+00 3.3333e-01
8 5.7667e-01 3.3333e-01

[NP3275/5/pdf] 3.g02dac.7

nag regsn mult linear NAG C Library Manual

9 1.3167e+00 3.3333e-01
10 1.7967e+00 3.3333e-01
11 -1.1733e+00 3.3333e-01
12 5.9000e-01 3.3333e-01

8.2. Example 2

This example program uses nag regsn mult linear (g02dac) to find the coefficient of the n degree
polynomial

p(x) = anxn + an−1x
n−1 + . . . a1x + ao

that fits the data, p(x(i)) to y(i), in a least-squares sense. In this example nag regsn mult linear
(g02dac) is called with both Nag MeanInclude and Nag MeanZero. The polynomial degree, the
number of data points and the tolerance can be modified using the example data file.

8.2.1. Program Text

#ifdef NAG_PROTO
static void ex2(void)
#else

static void ex2()
#endif
{
double rss, tol;
Integer i, ip, rank, j, m, n, degree, digits;
double df;
Boolean svd;
Nag_IncludeMean mean;
double b[MMAX], cov[(MMAX*MMAX+MMAX)/2], h[NMAX], p[MMAX*(MMAX+2)],
q[NMAX][MMAX+1], res[NMAX], se[MMAX], com_ar[MMAX*MMAX+5*(MMAX-1)],
wt[NMAX], x[NMAX][MMAX], y[NMAX];
double *wtptr = (double *)0; /* don’t use weights */
Integer sx[MMAX];

Vprintf("\n\n\ng02dac Example 2 Program Results\n");
/* Skip heading in data file */
Vscanf(" %*[^\n]");

/* Use mean = Nag_MeanInclude */

mean = Nag_MeanInclude;

Vscanf("%ld%ld%ld",°ree,&n,&digits);

if (n<=NMAX)
{

/* Set tolerance */
tol = pow(10.0, -(double)digits);
m = degree;
ip = degree + 1;

for (i = 0; i <ip-1; ++i)
sx[i] = 1;

for (i=0; i<n; i++)
{
Vscanf("%lf%lf", &x[i][degree-1],&y[i]);
for (j=0; j <degree; ++j)
x[i][j] = pow(x[i][degree-1],(double)(degree-j));

}

g02dac(mean, n, (double *)x, (Integer)TDX, m, sx, ip, y,
wtptr, &rss, &df, b, se, cov, res, h, (double *)q,
(Integer)(TDQ), &svd, &rank, p, tol, com_ar, NAGERR_DEFAULT);

Vprintf("Regression estimates (mean = Nag_MeanInclude) \n\n");
Vprintf("Coefficient Estimate Standard error\n\n");
for (j=1; j<ip; j++)
Vprintf("a(%ld)%20.4e%20.4e\n", degree+1-j, b[j], se[j]);

3.g02dac.8 [NP3275/5/pdf]

g02 – Regression Analysis g02dac

Vprintf("a(0)%20.4e%20.4e\n", b[0], se[0]);
Vprintf("\n\n");

/* Use mean = Nag_MeanZero */

mean = Nag_MeanZero;

m = degree + 1;
for (i = 0; i <ip; ++i)
sx[i] = 1;

for (i=0; i<n; i++)
x[i][m-1] = 1.0;

g02dac(mean, n, (double *)x, (Integer)TDX, m, sx, ip, y,
wtptr, &rss, &df, b, se, cov, res, h, (double *)q,
(Integer)(TDQ), &svd, &rank, p, tol, com_ar, NAGERR_DEFAULT);

Vprintf("Regression estimates (mean = Nag_MeanZero) \n\n");
Vprintf("Coefficient Estimate Standard error\n\n");
for (j=0; j<ip; j++)
Vprintf("a(%ld)%20.4e%20.4e\n", degree-j, b[j], se[j]);

Vprintf("\n\n");
}

else
{
Vfprintf(stderr, "n is out of range, n = %-3ld\n", n);
exit(EXIT_FAILURE);

}
return;
}

8.2.2. Program Data

g02dac Example 2 Program Data
3 11 15
31.80 -1.23
50.20 -1.08

120.00 -0.83
188.84 -0.53
250.20 -0.28
270.66 -0.15
360.20 0.26
392.97 0.53
444.54 0.93
530.50 1.08
550.02 1.35

8.2.3. Program Results

g02dac Example 2 Program Results
Regression estimates (mean = Nag_MeanInclude)

Coefficient Estimate Standard error

a(3) -8.8628e-09 7.9470e-09
a(2) 9.0059e-06 7.0244e-06
a(1) 2.3641e-03 1.7199e-03
a(0) -1.2614e+00 1.0568e-01

Regression estimates (mean = Nag_MeanZero)

Coefficient Estimate Standard error

a(3) -8.8628e-09 7.9470e-09
a(2) 9.0059e-06 7.0244e-06
a(1) 2.3641e-03 1.7199e-03
a(0) -1.2614e+00 1.0568e-01

[NP3275/5/pdf] 3.g02dac.9

